
El gran reto del Big Data:
la integración continua
Sergio Rodríguez de Guzmán, CTO PUE



The daily life 
of a developer is filled with 
monotonous and repetitive 

tasks.



Fortunately, 
we live in a pre-artificial 
intelligence age, which 
means computers are great 
at handling boring chores 
and they hardly ever 
complain about it!



Continuous Integration
• Continuous Integration (CI) is the process of 

automatically building and testing your software on a 
regular basis.

• This can be as often as every commit
• Builds run a full suite of unit and integration tests 

against every commit



Continuous Delivery
• Continuous Delivery (CD) is the logical next step from continuous 

integration.
• Continuous Delivery can be thought of as an extension to 

Continuous Integration which makes us catch defects earlier.
• It represents a philosophy and a commitment to ensuring that your 

code is always in a release-ready state.



Continuous Deployment
• Continuous Deployment (CD) requires every change to be deployed 

automatically, without human intervention.
• The ultimate culmination of this process is the actual delivery of 

features and fixes to the customer as soon as the updates are ready.



Source 
control

StagingBuild Production

Continuous Integration

Continuous Delivery

Continuous Deployment



Big Data Use Case

• New Feature
• New performance 

request



Big Data Use Case

• New Feature
• New performance 

request

IDE Commit Source Code
• Engineers commit new config 

and code changes
• Commit new Unit and Functional 

Test Cases



Big Data Use Case

• New Feature
• New performance 

request

IDE Commit Source Code
• Engineers commit new config and 

code changes
• Commit new Unit and Functional 

Test Cases



Big Data Use Case

Continuous Notification
• RAG Build Notification
• Test failure for JIRA defects
• Push notifications to JIRA/developers
• Update confluence documentation



Big Data Use Case Jenkins

Build/Configuration Orchestration
• Code Build and Unit Testing 

Performed
• ¿Functional and Load tests 

performed for build release?

Cloud Build



Cloud Build

• Docker native compatible
• Vulnerability checks
• Cloud or Local based
• No setup
• YAML configuration pipelines
• GitHub Integration



DEMO



Big Data Use Case Jenkins

Build/Configuration Orchestration
• Code Build and Unit Testing 

Performed
• ¿Functional and Load tests 

performed for build release?

Cloud Build



¿Functional and Load 
tests performed for build 

release?
In a Big Data World?



Functional Testing 
and Load Tests Challenges

• Compute resources
• Storage resources
• Configuration of Services and Apps



Option 1: Multiple Environments

PROACCDEVEL

Tests Tests Tests



Option 1: Multiple Environments – Pros and Cons

Cons:
• More maintenance
• More expensive
• Usually 24x7

Pros:
• Same sizing as the PRO 

cluster
• Same configuration
• Same services and security
• Load tests more accurate
• Data sources are the same as 

in PRO environment ¿?
• Predictable cost
• Flat rate



Option 1: Dynamic Environments

PROTEST
ACC

DEVEL

Tests

Data read from 
external 
datastores



Option 1: Dynamic Environments (Kubernetes)

Hadoop Helm Chart (YARN & MapReduce jobs)

https://github.com/helm/charts/tree/master/stable/hadoop


Option 1: Dynamic Environments (Kubernetes)

https://github.com/helm/charts/tree/master/stable/spark


Option 1: Dynamic Environments (Dataproc)



Option 1: Dynamic Environments (Kubernetes) – 
Pros and Cons

Pros:
• Potentially same sizing as the 

PRO cluster
• Same services
• Load tests accurate
• Data sources are the same as 

in PRO environment ¿?
• Low maintenance
• Reduce costs
• Pay as you go

Cons:
• No flat rate
• Need to use external cloud 

external storage
• Complex initial setup



Option 1: Dynamic Environments (Dataproc) – Pros 
and Cons

Cons:
• No flat rate
• Need to use external cloud 

external storage

Pros:
• Potentially same sizing as the PRO 

cluster
• Same services
• Load tests accurate
• Data sources are the same as in 

PRO environment ¿?
• No maintenance
• Reduce costs
• Pay as you go
• Need to use external cloud external 

storage



DEMO



Big Data Use Case Jenkins

Build/Configuration Orchestration
• Code Build and Unit Testing Performed
• ¿Functional and Load tests performed for 

build release?

Cloud Build



Big Data Use Case – Deploy Option A

Deploy
Google Cloud Storage

Jars
PySpark
Configs



Big Data Use Case – Deploy Option B

Deploy

Jars
PySpark
Configs



Big Data Use Case – Workflow Orchestration

Google Cloud 
Storage

Spark & Spark Streaming



Big Data Use Case – Workflow Orchestration

Google Cloud Storage Spark & Spark Streaming



Big Data Use Case – Workflow Orchestration

• Written in Java
• Jobs by time, event or data availability
• Command line, Java API y GUI
• XML property files
• Difficult to handle complex pipelines

• Designed for authoring
• Scheduling workflows as DAGs
• DAGs in Python
• Connectors for every major 

service/cloud provider
• Capable of creating extremely complex 

workflows

And now?



Big Data Use Case – Data Testing with Airflow



Data Testing Hell – Circle 1

DAG Integrity Tests
Have your CI (Continuous Integration) check if you DAG is an actual 
DAG.



Data Testing Hell – Circle 2

Split Ingestion from Deployment
Keep the logic you use to ingest data separate from the logic that 
deploys your application.

• Create a GIT repository per data source, containing the ETL for the 
ingestion, and one per project, containing the ETL for that specific 
project

• Keep all the logic and CI tests belonging to source/project isolated
• Define an interface per logical part



Data Testing Hell – Circle 3

Data Tests
Check if your logic is outputting what you’d expect…

• Are there files available for ingestion?
• Did we get the columns that we expected?
• Are the rows that are in there valid?
• Did the row count of your table only increase?



Data Testing Hell – Circle 4

Alerting
Get slack alerts from your data pipelines when they blow up.

When things go wrong 
(and we assume that this will happen), 

it is important that we are notified.



Data Testing Hell – Circle 5

Git Enforcing
Always make sure you’re running your latest verified code.

Git Enforcing to us means making sure that each 
day a process resets each DAG to the last verified 
version (i.e. the code on origin/master ).



Data Testing Hell – Circle 6

Mock Pipeline Tests
Create fake data in your CI so you know exactly what to expect when 
testing your logic.

• Tare two moving parts: the data (and its quality) and your code.
• In order to be able to reliably test your code, it’s very important to 

ensure that your code is the only ‘moving part’



Data Testing Hell – Circle 7

DTAP
Split your data into four different environments.

• Development is really small, just to see if it runs
• Test to take a representative sample of your data to do first sanity 

checks
• Acceptance is a carbon copy of Production, allowing you to test 

performance and have a Product Owner do checks before releasing 
to Production



Data Testing Hell – Circle 7

DTAP




