
Building A Data Science Platform 1

Building A Data
Science Platform
The tools that DataOps and platform engineers need
to design an end-to-end machine learning solution

Tobi Knaup,
CTO and Co-Founder, Mesosphere

Deep learning is
often superior to
human expertise when
transforming data
into knowledge.”

“

Building A Data Science Platform 3

Executive Summary
Machine learning in production requires a data science platform that encompasses
the complete set of tools that turn raw data into actionable intelligence. This
research describes the best practices and tools that data scientists and data
engineers can use to build a data science platform that combines existing data

stores with cutting edge machine learning (ML) frameworks.

Key Action Items
• Data scientists spend over 60percent1 of their time on data preparation and

model refinement. They should adopt automated workflow and open source
processing tools such as Apache Flink and Spark to speed up the preparation
process.

• According to Gartner, 80 percent of data scientists will have deep learning in
their toolkits by 2018. Data engineers and DataOps professionals should work
with data scientists to create an end-to-end solution that is easy to provision
and manage on an ongoing basis.

• Most friction is generated among the local environments, where data scientists
develop models, and the distributed environments, where data engineers and
DataOps professionals manage tools that train the models. Allowing data
scientists to explore models on a fully distributed environment reduces friction
and increases agility.

Data analytics, and especially deep learning, is now how we turn raw data into
knowledge. With the deluge of data that has come from our increasingly connected
world, the need to automate the processing, analysis and implementation has
driven interest in deep learning tools. Starting your first Deep Learning project with
TensorFlow on your laptop is very simple, but at the larger scales required for most
big data sets, organizations often struggle with managing the infrastructure.

Challenges
Machine and Deep Learning Frameworks such as Apache Spark, TensorFlow,
MXNet, and PyTorch enable anyone to train deep learning models.

It is relatively easy to get started on a laptop and train a basic, non-distributed
model with sample at-rest data. However, moving from a single laptop setup
towards a scalable, production-grade data science platform is a completely different
challenge and, arguably, one of the most difficult ones, as it involves collaborating
with different teams across an organization.

Building A Data Science Platform 4

Today, data scientists are dependent on the infrastructure and operations team, waiting
for the compute resources to deploy models and then using different languages and
tools in development and production environments.

Overall moving from locally developing a model to deploying an integrated data science
platform involves a number of challenges, including how to:

• Store large training data sets;

• Access multiple data sets from many sources and combine the data;

• Cleanse and prepare data sets;

• Provide a consistent interface for data scientist between the development and
production environment;

• Distribute the resource intensive training across a large cluster, including special
hardware such as Graphics Processing Unit (GPU) or even Tensor Processing
Units (TPUs);

• Store the trained models along with metadata;

• Serve models at scale;

• Leverage CI/CD to automate the training, testing, and serving cycle; and

• Provide a multi-tenant platform on a shared cluster.

Typically, the time spent on the machine learning code is low compared to the other
parts of the platform, which are depicted in the graphic below.

Building A Data Science Platform 5

The Data Science Platform
Gartner predicts that, by 2019, deep learning will be a critical driver for best-in-class
performance for demand, fraud and failure predictions2. To answer these questions we
need to consider the complete data science platform.

Data Storage
The fuel for machine learning is the raw data that must be refined and fed into the
processing framework. Modern deep learning algorithms empirically offer sublinear
improvements in performance as the amount of training data grows exponentially3;
therefore, it is crucial to deploy storage systems that can grow as more data is being
collected. With large data sets, storage typically needs to be distributed across multiple
nodes for capacity and fault-tolerance. Another challenge is streams of data (e.g.,
financial transaction data) where total amount of data in the stream has to be stored in
a persistent way.

There are different options depending on your data and environment.

• HDFS provides scalable distributed storage for unstructured data sets.

• Apache Cassandra provides scalable store services for more structured data.

• Apache Kafka providing the capability for scalable data streams.

• Cloud Storage/Database services such as AWS DynamoDB or Google File System
provide managed storage services if you are running in a cloud environment and
don’t mind the lock-in.

Building A Data Science Platform 6

Data Preparation & Cleansing
The preprocessing and post processing of data is often the most time consuming,
typically eating up 60 percent of the cycles for any machine learning project. It is also
one of the most important steps: the results are only as good as the input data. Data
scientists need to be meticulous, correcting wrong or inconsistent data, fill in missing
values where necessary, and preprocessing the data for consistency. They then need
to normalize the data set, making sure that date format, metric system and distribution
range is consistent.

Apache Spark, which is known for its data analytics capabilities, is sometimes used
as a machine learning framework, provides micro-batch processing that can help clean
up data. A good alternative tool for data cleansing, especially when the data is
streaming is Apache Flink.

Model Engineering
There are many Integrated Development Environments (IDE) that can be used to specify
models using TensorFlow, Python, or higher level abstractions. Keras is currently
the most popular abstraction with over 200,000 users.4 There are other options like,
Zeppelin Notebooks, for instance, that is focused on interoperability with Spark.
However, the feature sets of these notebooks are converging, so it is more a matter of
preference.

Jupyter Notebooks is the IDE of choice for many data scientists. Jupyter Notebooks
allow users to create and share documents that contain live code, equations,
visualizations and narrative text. There are entire systems built around Jupyter
Notebooks to help with code collaboration, including BeakerX, an open source project
from Two Sigma, that provides additional plugins for Jupyter Notebooks, enabling JVM
languages, interactive plotting, exporting capabilities.

Each data scientist uses one or more notebooks, so there is a need to easily create
new notebooks with certain resources, for example, 1 GPU, 4GB memory, and 2 CPUs.
JupyterHub is great for spawning and managing multiple Jupyter Notebooks.

After data scientists have explored and specified their model, there is the need to move
the model specification to a versioned repository for model storage and training. This
is still often done manually, but BeakerX, for example, already supports exporting data
from a notebook. It is important here to store the versioned information and, hence, be
able to go back and compare against an older version of the code.

Building A Data Science Platform 7

Model Training
The cornerstone for any deep learning platform is the framework providing the
statistical and mathematical libraries to perform the modeling. As of now, Tensorflow is
receiving the most attention from the open source community.

It is important to keep in mind that training is a highly iterative process. Typically for one
production model, the data scientist will train up to hundreds of model variations to test
different hyperparameters or data sets. This, together with the large data sets makes
training the most resource-intensive phase of the data science platform, which typically
requires a large cluster and often specialized devices such as Graphics Processing Unit
(GPU) or even Tensor Processing Units (TPUs).

Building A Data Science Platform 8

Container Management
We need an easy way to deploy and manage the different parts of a data science
platform, since,or example, workflows of different teams may require multiple instances
of the platform. Container orchestrators can make this easier.

Kubernetes is a popular container management solution with wide adoption.
Kubernetes is a good choice if there are generalized use cases beyond machine learning
or there is an existing preference for Kubernetes. Kubeflow provides an easy method
to get distributed Tensorflow up and running on Kubernetes with a few steps. However,
Kubeflow does not address distributed storage, data preparation, and some other parts
of the data science platform. DC/OS can provision and manage the entire data science
platform with Kubernetes.

Marathon provides lightweight container orchestration for organizations and may be a
good fit if the organization is trying to only do deep learning versus using a generalized,
feature-rich solution built for expansive list of container use cases.

Mesosphere DC/OS, powered by Apache Mesos, provides both Kubernetes and
Marathon “as-a-Service” on any infrastructure or even across hybrid setups. DC/OS
automates the delivery and management of container orchestration, Tensorflow, deep
learning, CI/CD tools and the entire data platform “as-a-service”.

Model Management
One of the key challenges for deep learning is that one typically trains a large number
of different models (e.g., different hyperparameter, different models, different data sets,
etc.) which need to be stored and managed.

The storage of the models needs to be scalable and highly-available for the later serving
stage. Typically we distinguish between storage of the Model itself and the associated
Metadata (e.g., accuracy, hyperparameter used, training time).

• Model storage: to store the models, open source distributed data tools such as
HDFS or GFS are good options that have been on the market for a while and with
relatively high adoption among IT professionals.

• Metadata: crucial to understand the provenance of a trained model and selecting
the best model when serving. As the metadata is semi-structured, documents
stores such as MongoDB or ArangoDB (whose graph support even allows us to
easily specify relationships between models) are typically the best choice.

Building A Data Science Platform 9

When storing models, we might even store multiple model versions of a trained image
for different target environments, e.g., an optimized version for mobile phones or
embedded environments. In addition to the accuracy of the prediction, an important
metric for a trained model is the serving speed: how long does it take to do inference.

Another useful tactic is to store and reuse pre-trained models using TensorFlowHub.
This gives the data scientist a jumpstart on training of similar models. Model sharing
drastically lowers the resource consumption for training a new model as you can reuse
previous training efforts (e.g., a model being trained by Google with over 200,000 TPU
hours for Imagine Recognition) and enables completely new use cases.

Model Serving
Once the models are processed and stored, the chosen model needs to be served
when requested. This stage is what we see as the output of deep learning. When we
ask to identify an object, the best model will be served in order to do the job. Usually
the “best model” is determined by looking at the associated metadata (e.g., training/
test accuracy, execution time). Sometimes even multiple models are being served at the
same time, and the final decision is aggregated based on the individual decisions.

TensorFlow Serving is the essential model serving that comes with Kubeflow. Other
typical options include exporting models into a common servable format, such as
PMML or H2O MOJO, and serving them using Apache Spark.

The model serving should also include a load balancer among model versions (and
when scaling out multiple instances of the same model) in order to keep serving highly-
available despite switching among models. Also keep in mind you probably have to
apply the same data preparation and cleansing that you applied to the training data set
here, perhaps using Spark or Flink. This can be especially challenging if you are dealing
with streaming requests from a website, for example.

Continuous Integration / Continuous
Delivery
In a production scenario you typically want to automate all the steps after a model has
been exported from a notebook by a data scientist (i.e., training, testing, and serving)
using a continuous integration / continuous delivery (CI/CD) system such as Jenkins.

Building A Data Science Platform 10

Monitoring
There are typically two parts to monitor in a data science platform. Since they are
relevant to different personas, they typically are dealt by a separate system. The
monitoring of model performance models is typically done with a system like
TensorFlow Serving which enables the data scientist to keep an eye on the performance
of their models. A distributed infrastructure should be monitored by a more specialized
tool such as DataDog, Sysdig, or Prometheus.

Debugging
Debugging, especially static graphs models where you cannot simply step through,
can be challenging for a data scientist. Luckily tools such as the TensorFlow Debugger
support this process. Another challenge is profiling, especially with more expensive
hardware such as GPU or TPU. It is important to utilize them well, so tools like the
TensorFlow Profiler help to understand the utilization and potential bottlenecks.

Building A Data Science Platform 11

Walkthrough
So how do all those pieces come together? Let us walk through a typical
data science flow.

Step 1 - Upload Data set

Data scientist uploads data set Into a data store or connects a data stream
with log or sensor data to a data store.

Step 2 - Cleanse and Prepare Data set

Data scientist stores the modified data set back into the data store.

Step 3 - Spawn Jupyter Notebook

Data Scientist spawns Jupyter Notebook with given resource configuration.

Step 4 - Explore Data & Develop Model

Explore the data (potentially using a smaller sample data set) and develops a model.
In case the resources of the notebook are not sufficient, he/she might connect the
notebook against a larger cluster.

Step 5 - Model Export

The data scientist exports the (untrained) model to versioned storage.

Building A Data Science Platform 12

Step 6 - Automate Using CI/CD

The CI/CD system automatically coordinates the distributed training and testing of the
model. This stage might involve multiple iterations of training and testing for different
sets of hyperparameter and, hence, the output are often multiple trained model.

Step 6A - Distributed Training

First, the model is trained for a specific hyperparameter configuration on a
distributed cluster.

Step 6B - Model Testing

The trained model is evaluated against a test data set to determine the accuracy.

Step 6C - Model Optimization

The trained model might be further optimized, e.g., by removing an unused
parameter or optimizing for mobile environments.

Step 6D - Model / Metadata Storage

The trained and optimized model and its metadata (e.g., accuracy) are exported to
a Model/Metadata store.

Step 7 - Model Serving

Model serving selects the best stored model based on the metadata and policies.

Step 8 - Kafka Queue with Requests

Requests are being served from a Kafka queue and serving metadata (e.g., serving
accuracy is collected).

Building A Data Science Platform 13

Conclusion
Building a complete data science platform involves many more frameworks beyond the
core machine learning frameworks, such as TensorFlow or Spark. It involves multiple
personas in an organization and a non-trivial amount of computing resources.

As noted above, there are different options for these steps and the choice of a specific
component for the data science platform often depends on the specifications of your
environment. Bringing a data science platform to existing data sources requires a
variety of tools such as Spark, Cassandra, HDFS, and Kafka. IT operations should be
prepared to provision these services on demand and manage them on an ongoing basis.
DC/OS is a platform which can help to manage all these different frameworks and also
make efficient use of cluster resources.

DC/OS Automates Data Science
Deliver a scalable data science platform on any
infrastructure with push-button provisioning

Mesosphere DC/OS automates the management of a machine learning platform.
DC/OS is a software solution that acts as a “run everywhere” cloud provider for
Kubernetes, Tensorflow and big data platforms.

Building A Data Science Platform 14

Mesosphere’s Proven Success
Mesosphere is leading the enterprise transformation toward distributed computing
and hybrid cloud portability. Mesosphere DC/OS is the premier platform for building,
deploying, and elastically scaling modern, containerized applications and big
data without compromise. DC/OS makes running containers, data services, and
microservices easy, across any combination of infrastructure — datacenter, cloud, or
edge — without lock-in.

Deutsche Telekom runs a cloud-native, machine learning
platform on Mesosphere DC/OS.

Learn More
Ready to see how Mesosphere can power data science in your organization? From
weekly touch-base meetings to biweekly roadmap calls, customer success managers
and solution architects work lockstep with your technology organization to eliminate the
learning curve. Contact sales@mesosphere.com today to get started.

1“Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey
Says,” https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-
consuming-least-enjoyable-data-science-task-survey-says/#f3d1adc6f637

“Hidden Technical Debt in Machine Learning Systems,” https://papers.nips.cc/
paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

2“Gartner Says Deep Learning Will Provide Best-in-Class Performance for Demand, Fraud
and Failure Predictions By 2019,” https://www.gartner.com/newsroom/id/3804363

3“Deep Learning Scaling is Predictable, Empirically,” https://arxiv.org/abs/1712.00409

4“Keras: The Python Deep Learning library,” https://keras.io/

