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Building A Data  
Science Platform
The tools that DataOps and platform engineers need 
to design an end-to-end machine learning solution 
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Deep learning is  
often superior to 
human expertise when 
transforming data  
into knowledge.”
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Executive Summary 
Machine learning in production requires a data science platform that encompasses 
the complete set of tools that turn raw data into actionable intelligence. This 
research describes the best practices and tools that data scientists and data 
engineers can use to build a data science platform that combines existing data 

stores with cutting edge machine learning (ML) frameworks. 

Key Action Items
• Data scientists spend over 60percent1 of their time on data preparation and 

model refinement. They should adopt automated workflow and open source 
processing tools such as Apache Flink and Spark to speed up the preparation 
process.   

• According to Gartner, 80 percent of data scientists will have deep learning in 
their toolkits by 2018. Data engineers and DataOps professionals should work 
with data scientists to create an end-to-end solution that is easy to provision 
and manage on an ongoing basis.

• Most friction is generated among the local environments, where data scientists 
develop models, and the distributed environments, where data engineers and 
DataOps professionals manage tools that train the models. Allowing data 
scientists to explore models on a fully distributed environment reduces friction 
and increases agility.   

Data analytics, and especially deep learning, is now how we turn raw data into 
knowledge. With the deluge of data that has come from our increasingly connected 
world, the need to automate the processing, analysis and implementation has 
driven interest in deep learning tools. Starting your first Deep Learning project with 
TensorFlow on your laptop is very simple, but at the larger scales required for most 
big data sets, organizations often struggle with managing the infrastructure. 

Challenges
Machine and Deep Learning Frameworks such as Apache Spark, TensorFlow, 
MXNet, and PyTorch enable anyone to train deep learning models.

It is relatively easy to get started on a laptop and train a basic, non-distributed 
model with sample at-rest data. However, moving from a single laptop setup 
towards a scalable, production-grade data science platform is a completely different 
challenge and, arguably, one of the most difficult ones, as it involves collaborating 
with different teams across an organization.
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Today, data scientists are dependent on the infrastructure and operations team, waiting 
for the compute resources to deploy models and then using different languages and 
tools in development and production environments.

Overall moving from locally developing a model to deploying an integrated data science 
platform involves a number of challenges, including how to:

• Store large training data sets;

• Access multiple data sets from many sources and combine the data;

• Cleanse and prepare data sets;

• Provide a consistent interface for data scientist between the development and 
production environment;

• Distribute the resource intensive training across a large cluster, including special 
hardware such as Graphics Processing Unit (GPU) or even Tensor Processing  
Units (TPUs);

• Store the trained models along with metadata;

• Serve models at scale; 

• Leverage CI/CD to automate the training, testing, and serving cycle; and

• Provide a multi-tenant platform on a shared cluster.

Typically, the time spent on the machine learning code is low compared to the other 
parts of the platform, which are depicted in the graphic below.
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The Data Science Platform
Gartner predicts that, by 2019, deep learning will be a critical driver for best-in-class 
performance for demand, fraud and failure predictions2. To answer these questions we 
need to consider the complete data science platform.

Data Storage 
The fuel for machine learning is the raw data that must be refined and fed into the 
processing framework. Modern deep learning algorithms empirically offer sublinear 
improvements in performance as the amount of training data grows exponentially3; 
therefore, it is crucial to deploy storage systems that can grow as more data is being 
collected. With large data sets, storage typically needs to be distributed across multiple 
nodes for capacity and fault-tolerance. Another challenge is streams of data (e.g., 
financial transaction data) where total amount of data in the stream has to be stored in 
a persistent way.

There are different options depending on your data and environment.

• HDFS provides scalable distributed storage for unstructured data sets.

• Apache Cassandra provides scalable store services for more structured data.

• Apache Kafka providing the capability for scalable data streams.

• Cloud Storage/Database services such as AWS DynamoDB or Google File System 
provide managed storage services if you are running in a cloud environment and 
don’t mind the lock-in.
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Data Preparation & Cleansing
The preprocessing and post processing of data is often the most time consuming, 
typically eating up 60 percent of the cycles for any machine learning project. It is also 
one of the most important steps: the results are only as good as the input data. Data 
scientists need to be meticulous, correcting wrong or inconsistent data, fill in missing 
values where necessary, and preprocessing the data for consistency. They then need 
to normalize the data set, making sure that date format, metric system and distribution 
range is consistent. 

Apache Spark, which is known for its data analytics capabilities, is sometimes used  
as a machine learning framework, provides micro-batch processing that can help clean  
up data. A good alternative tool for data cleansing, especially when the data is 
streaming is Apache Flink.

Model Engineering
There are many Integrated Development Environments (IDE) that can be used to specify 
models using TensorFlow, Python, or higher level abstractions. Keras is currently 
the most popular abstraction with over 200,000 users.4 There are other options like, 
Zeppelin Notebooks, for instance, that is focused on interoperability with Spark. 
However, the feature sets of these notebooks are converging, so it is more a matter of 
preference.

Jupyter Notebooks is the IDE of choice for many data scientists. Jupyter Notebooks 
allow users to create and share documents that contain live code, equations, 
visualizations and narrative text. There are entire systems built around Jupyter 
Notebooks to help with code collaboration, including BeakerX, an open source project 
from Two Sigma, that provides additional plugins for Jupyter Notebooks, enabling JVM 
languages, interactive plotting, exporting capabilities.

Each data scientist uses one or more notebooks, so there is a need to easily create 
new notebooks with certain resources, for example, 1 GPU, 4GB memory, and 2 CPUs. 
JupyterHub is great for spawning and managing multiple Jupyter Notebooks.

After data scientists have explored and specified their model, there is the need to move 
the model specification to a versioned repository for model storage and training. This 
is still often done manually, but BeakerX, for example, already supports exporting data 
from a notebook. It is important here to store the versioned information and, hence, be 
able to go back and compare against an older version of the code.
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Model Training
The cornerstone for any deep learning platform is the framework providing the 
statistical and mathematical libraries to perform the modeling. As of now, Tensorflow is 
receiving the most attention from the open source community. 

It is important to keep in mind that training is a highly iterative process. Typically for one 
production model, the data scientist will train up to hundreds of model variations to test 
different hyperparameters or data sets. This, together with the large data sets makes 
training the most resource-intensive phase of the data science platform, which typically 
requires a large cluster and often specialized devices such as Graphics Processing Unit 
(GPU) or even Tensor Processing Units (TPUs).
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Container Management
We need an easy way to deploy and manage the different parts of a data science 
platform, since,or example, workflows of different teams may require multiple instances 
of the platform. Container orchestrators can make this easier.

Kubernetes is a popular container management solution with wide adoption. 
Kubernetes is a good choice if there are generalized use cases beyond machine learning 
or there is an existing preference for Kubernetes. Kubeflow provides an easy method 
to get distributed Tensorflow up and running on Kubernetes with a few steps. However, 
Kubeflow does not address distributed storage, data preparation, and some other parts 
of the data science platform. DC/OS can provision and manage the entire data science 
platform with Kubernetes.

Marathon provides lightweight container orchestration for organizations and may be a 
good fit if the organization is trying to only do deep learning versus using a generalized, 
feature-rich solution built for expansive list of container use cases.  

Mesosphere DC/OS, powered by Apache Mesos, provides both Kubernetes and 
Marathon “as-a-Service” on any infrastructure or even across hybrid setups. DC/OS 
automates the delivery and management of container orchestration, Tensorflow, deep 
learning, CI/CD tools and the entire data platform “as-a-service”.  

Model Management
One of the key challenges for deep learning is that one typically trains a large number 
of different models (e.g., different hyperparameter, different models, different data sets, 
etc.) which need to be stored and managed.

The storage of the models needs to be scalable and highly-available for the later serving 
stage. Typically we distinguish between storage of the Model itself and the associated 
Metadata (e.g., accuracy, hyperparameter used, training time).

• Model storage: to store the models, open source distributed data tools such as 
HDFS or GFS are good options that have been on the market for a while and with 
relatively high adoption among IT professionals. 

• Metadata: crucial to understand the provenance of a trained model and selecting 
the best model when serving. As the metadata is semi-structured, documents 
stores such as MongoDB or ArangoDB (whose graph support even allows us to 
easily specify relationships between models) are typically the best choice.
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When storing models, we might even store multiple model versions of a trained image 
for different target environments, e.g., an optimized version for mobile phones or 
embedded environments. In addition to the accuracy of the prediction, an important 
metric for a trained model is the serving speed: how long does it take to do inference.

Another useful tactic is to store and reuse pre-trained models using TensorFlowHub. 
This gives the data scientist a jumpstart on training of similar models. Model sharing 
drastically lowers the resource consumption for training a new model as you can reuse 
previous training efforts (e.g., a model being trained by Google with over 200,000 TPU 
hours for Imagine Recognition) and enables completely new use cases.

Model Serving 
Once the models are processed and stored, the chosen model needs to be served 
when requested. This stage is what we see as the output of deep learning. When we 
ask to identify an object, the best model will be served in order to do the job. Usually 
the “best model” is determined by looking at the associated metadata (e.g., training/
test accuracy, execution time). Sometimes even multiple models are being served at the 
same time, and the final decision is aggregated based on the individual decisions.

TensorFlow Serving is the essential model serving that comes with Kubeflow. Other 
typical options include exporting models into a common servable format, such as 
PMML or H2O MOJO, and serving them using Apache Spark.

The model serving should also include a load balancer among model versions (and 
when scaling out multiple instances of the same model) in order to keep serving highly-
available despite switching among models. Also keep in mind you probably have to 
apply the same data preparation and cleansing that you applied to the training data set 
here, perhaps using Spark or Flink. This can be especially challenging if you are dealing 
with streaming requests from a website, for example.

Continuous Integration / Continuous 
Delivery 
In a production scenario you typically want to automate all the steps after a model has 
been exported from a notebook by a data scientist (i.e., training, testing, and serving) 
using a continuous integration / continuous delivery (CI/CD) system such as Jenkins.  
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Monitoring
There are typically two parts to monitor in a data science platform. Since they are 
relevant to different personas, they typically are dealt by a separate system. The 
monitoring of model performance models is typically done with a system like  
TensorFlow Serving which enables the data scientist to keep an eye on the performance 
of their models. A distributed infrastructure should be monitored by a more specialized 
tool such as DataDog, Sysdig, or Prometheus.

Debugging
Debugging, especially static graphs models where you cannot simply step through, 
can be challenging for a data scientist. Luckily tools such as the TensorFlow Debugger 
support this process. Another challenge is profiling, especially with more expensive 
hardware such as GPU or TPU. It is important to utilize them well, so tools like the 
TensorFlow Profiler help to understand the utilization and potential bottlenecks.
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Walkthrough
So how do all those pieces come together? Let us walk through a typical  
data science flow.

Step 1 - Upload Data set

Data scientist uploads data set Into a data store or connects a data stream  
with log or sensor data to a data store.

Step 2 - Cleanse and Prepare Data set

Data scientist stores the modified data set back into the data store.

Step 3 - Spawn Jupyter Notebook

Data Scientist spawns Jupyter Notebook with given resource configuration.

Step 4 - Explore Data & Develop Model

Explore the data (potentially using a smaller sample data set) and develops a model. 
In case the resources of the notebook are not sufficient, he/she might connect the 
notebook against a larger cluster.

Step 5 - Model Export

The data scientist exports the (untrained) model to versioned storage.
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Step 6 -  Automate Using CI/CD

The CI/CD system automatically coordinates the distributed training and testing of the 
model. This stage might involve multiple iterations of training and testing for different 
sets of hyperparameter and, hence, the output are often multiple trained model.  

Step 6A - Distributed Training

First, the model is trained for a specific hyperparameter configuration on a 
distributed cluster.

Step 6B - Model Testing

The trained model is evaluated against a test data set to determine the accuracy.

Step 6C - Model Optimization

The trained model might be further optimized, e.g., by removing an unused 
parameter or optimizing for mobile environments.

Step 6D - Model / Metadata Storage

The trained and optimized model and its metadata (e.g., accuracy) are exported to 
a Model/Metadata store.

Step 7 - Model Serving

Model serving selects the best stored model based on the metadata and policies. 

Step 8 - Kafka Queue with Requests

Requests are being served from a Kafka queue and serving metadata (e.g., serving 
accuracy is collected).
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Conclusion
Building a complete data science platform involves many more frameworks beyond the 
core machine learning frameworks, such as TensorFlow or Spark. It involves multiple 
personas in an organization and a non-trivial amount of computing resources. 

As noted above, there are different options for these steps and the choice of a specific 
component for the data science platform often depends on the specifications of your 
environment. Bringing a data science platform to existing data sources requires a 
variety of tools such as Spark, Cassandra, HDFS, and Kafka. IT operations should be 
prepared to provision these services on demand and manage them on an ongoing basis. 
DC/OS is a platform which can help to manage all these different frameworks and also 
make efficient use of cluster resources. 

DC/OS Automates Data Science 
Deliver a scalable data science platform on any  
infrastructure with push-button provisioning 

Mesosphere DC/OS automates the management of a machine learning platform.  
DC/OS is a software solution that acts as a “run everywhere” cloud provider for 
Kubernetes, Tensorflow and big data platforms. 
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Mesosphere’s Proven Success
Mesosphere is leading the enterprise transformation toward distributed computing 
and hybrid cloud portability. Mesosphere DC/OS is the premier platform for building, 
deploying, and elastically scaling modern, containerized applications and big 
data without compromise. DC/OS makes running containers, data services, and 
microservices easy, across any combination of infrastructure — datacenter, cloud, or 
edge — without lock-in.

Deutsche Telekom runs a cloud-native, machine learning 
platform on Mesosphere DC/OS.

Learn More
Ready to see how Mesosphere can power data science in your organization? From 
weekly touch-base meetings to biweekly roadmap calls, customer success managers 
and solution architects work lockstep with your technology organization to eliminate the 
learning curve. Contact sales@mesosphere.com today to get started. 
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